The HABRI Foundation is calling for research proposals to investigate the health outcomes of pet ownership and/or animal-assisted activity or therapy, both for the people and the animals involved. To learn more, visit https://habri.org/grants/funding-opportunities/ close

 
You are here: Home / Journal Articles / Acid-base responses of fat-adapted horses: relevance to hard work in the heat / About

Acid-base responses of fat-adapted horses: relevance to hard work in the heat

By D. S. Kronfeld, S. E. Custalow, P. L. Ferrante, L. E. Taylor, J. A. Wilson, W. Tiegs

View Link (HTM)

Licensed under

Category Journal Articles
Abstract

Feeding and training may affect acid-base responses to strenuous exercise. Acidosis usually correlates with higher blood lactate concentrations during intense exercise, but alkalosis has been found in horses, and higher lactate responses during sprints have been found in fat adapted horses. A comprehensive physico-chemical approach was used to evaluate acid-base responses during exercise in fat adapted horses. In incremental tests and repeated sprints, changes in blood [H+] depended on corresponding changes in pCO2 but not strong ion difference (SID, the algebraic sum of ions of sodium, potassium, chloride and lactate). The influence of changes in [Lac-] were largely offset by changes in [Na+], [K+] and [Cl-], so that SID was unchanged and did not contribute to the exercise induced acidaemia, so it may be inaccurate to term this a lactic-acidosis. During repeated sprints, central venous [H+] increased (acidosis) but arterial [H+] decreased (alkalosis). These changes were consistent with concurrent changes in venous and arterial pCO2 but not SID. Fat adaptation decreased mixed venous pCO2 during repeated sprints, which is consistent with the lower respiratory quotient associated with fat oxidation. Less pulmonary work to eliminate CO2 could benefit horses under hot and humid conditions, especially those with mildly reduced pulmonary function. The blood lactate response was decreased during aerobic tests but increased during anaerobic tests on fat adapted horses. Fat adaptation appears to facilitate the metabolic regulation of glycolysis, by sparing glucose and glycogen at work of low intensity, but by promoting glycolysis when power is needed for high intensity exercise. The blood lactate response to repeated sprints was increased more by the combination of fat adaptation and oral supplementation of sodium bicarbonate than by the sum of the responses to fat alone or bicarbonate alone. This synergism suggests that need for further studies of the interaction of fat adaptation with dietary cation-anion balance, especially under hot conditions. These results agree with previous findings of lower feed intake and faecal output, lower loads of heat and CO2, lower water losses in the faeces and by evaporation, and less spontaneous activity and reactivity in fat adapted horses. Thus fat adaptation confers several advantages on horses used for hard work, especially in the heat.

Date 1998
Publication Title Applied Animal Behaviour Science
Volume 59
Issue 1/3
Pages 61-72
ISBN/ISSN 0168-1591
Language English
Author Address Virginia Polytechnic Institute and State University, 3170 Litton Reeves, Blacksburg, VA 24061-0306, USA.
Cite this work

Researchers should cite this work as follows:

Tags
  1. Acidity
  2. Animal nutrition
  3. Animal physiology
  4. Blood
  5. Corn
  6. Diets
  7. Draft animals
  8. Exercise
  9. Fat
  10. Heat
  11. Heat stress
  12. Horses
  13. Maize
  14. Mammals
  15. Metabolism
  16. peer-reviewed
  17. responses
  18. traction animals
  19. training of animals
  20. work
  21. Working animals
Badges
  1. peer-reviewed